University of Information Technology & Sciences (UITS) Faculty of Science and Engineering

Department of Computer Science and Engineering

Program: B.Sc. in CSE
Term Final Examination, Spring-2023
Course Title: Chemistry
Course Code: CHEM 175

		Course Code: CHEM 175		
Marks: 50 Time: 3 (three) Hours (Answer any five (05) out of following seven (07) questions. Assume necessary data/values if missing)				
1.	a) b)	What is energy of activation (Ea)? Derive an equation showing the relationship between temperature and rate constant (k). Discuss the isolation and differential methods to find the order of a reaction.	[05] [05]	
2.	a)	Define heat of solution and heat of combustion with suitable examples. How can you determine the heat of combustion in a laboratory?	[04]	
	b)	Derive mathematical equation showing the effect of temperature on the heat of reaction. Name the equation.	[03]	
	c)	The heat of reaction of $N_2 + 3H_2 \rightarrow 2NH_3$ at 27^0C was found to be -21.976 kcal. What will be the heat of reaction at 50°C? The heat capacities Cp at 27°C for N_2 , H_2 and NH_3 are 6.8, 6.77 and 8.86 cal.mol ⁻¹ .deg ⁻¹ respectively	[03]	
3.	a)	What do you understand by Equilibrium and Equilibrium constant? Derive a relationship between Kp and Kc and explain with examples.	[04]	
	b)	Show how the change of catalyst and temperature affect a gaseous reaction according to Le Chatelier principle.	[03]	
	c)	The value of Kp for the reaction $2N_2O_5(g) \leftrightarrow 4NO_2(g) + O_2(g)$ is $1.9x10^3$ atm ⁻³ at 45^0 C. Calculate the value of Kc at the same temperature.	[03]	
4.	a)	State and explain Lowry-Bronsted and Arrhenius concepts of acids and bases. Mention the salient features of the concepts with suitable examples.	[04]	
	b)	What is buffer solution? Give the types and mode of operation of buffer solution.	[04]	
	c)	Discuss the meaning of the term pH and Kw and show how they are interrelated.	[02]	
5.	a)	Derive the integrated rate equation for a first order reaction $A \rightarrow P$ and prove that the half-life for a first order reaction is independent of initial concentration.	[06]	

	b)	A first order reaction is 40% complete at the end of 50 mins. What will be value of the rate constant (k)? In how many minutes will the reaction be 80% complete?	[04]
6.	a)	Define and explain the terms Paramagnetism, Diamagnetism and Bond Order with suitable examples.	[04]
	b)	Draw the molecular diagram of NO and CN and explain the bond order and magnetic properties of them.	[06]
7.	a)	Explain why is Sulphuric acid stronger than acetic acid in aqueous medium.	[03]
	b)	Define Rate and Order of a reaction. Mention the factors affecting reaction rate.	[03]
	c)	For the reaction $2NO(g) + Cl_2(g) \leftrightarrow 2NOCl(g)$ at $25^{\circ}C$, the values of partial pressures at equilibrium were found to be 1.2 atm; 5.0×10^{-2} atm and 3×10^{-1} atm for NOCl; NO and Cl ₂ respectively. Calculate the Kp for the reaction	[04]