University of Information Technology & Sciences (UITS) Faculty of Science and Engineering

Department of Computer Science and Engineering

Program: B.Sc. in CSE

Term Final Examination, Spring 2025 Course Title: Engineering Chemistry

Course Code: CHEM 0531111

Marks: 50

Time: 3 (three) hours

(Answer all questions)

Q.No.	Questions	Marks
1 (a)	Lewis structures extend the concept of the electron dot diagram by adding lines between	[05]
	atoms to represent shared pairs in a chemical bond. Identify the Lewis dot structures of	
	<u>CH2O</u> , <u>BCl3</u> , NO3 ⁻ , PCl3, PCl5.	6
(6)	In Hybridization, the five shapes are linear, trigonal planar, tetrahedral, Trigonal planar,	[05]
	Trigonal by-Pyramidal, and octahedral. However, NH ₃ and H ₂ O both are SP ³ hybridized but	
	H ₂ O is V shaped where NH ₃ is Pyramidal. Explain the phenomenon with electronic	
	configuration, hybridization mechanism and appropriate figures.	
2.(a)	The valence-bond theory failed to adequately explain how certain molecules contain two	[04]
	or more equivalent bonds whose bond orders lie between a single bond and pa double	
	bond. However, the molecular orbital theory solves the problem by describing geometry	
	of the molecules. Describe the principles of molecular orbital theory.	
(b)	Molecular orbital theory (MOT) can explain the bond order, stability and magnetic	[06]
/	behavior of a molecule. Explain the bond order and magnetic behavior of N2, O2, F2 and	
	NO using the MOT diagram.	
3.(a)	Rarim asks Zaman to prepare buffer solution for an experiment in the chemistry laboratory.	[04]
	Zaman takes CH ₃ COOH, NH ₄ OH and some other chemicals to help Karim to prepare buffer	
	solutions. Explain how Zaman can prepare acidic and basic buffer solutions and discuss	
	the mechanism of acidic and basic buffer solution to maintain constant pH.	
(26)	In the chemical laboratory, sometimes we need to add water to dilute the concentrated	[06]
2	solutions. Sometimes, we use simple formula to find out the pH and neutralizing point.	
	Using these formulas, answer the followings:	
	You have 0.01M HCl and 0.0125M H ₂ SO ₄ in the laboratory. Calculate pH of all	
	of the acids.	
	You have a 18M HCl solution in your lab. But, for a chemical reaction, you need	
	200mL of 0.5M HCl solution. Solve the problem.	
	iii. To neutralize a monoprotic base, 200mL of 1M HCl, 100mL of 0.5M H ₂ SO ₄ and	

250mL of 0.25M HNO₃ were required. Identify the pH of that base.

4. (a) In a gaivanic cell, Zn and Cu are used as electrode.

Draw the galvanic cell and indicate anode-cathode.

Write the oxidation and reduction half-reaction.

Using the Table 4(b), Calculate the standard EMF (E°cell) of the electrochemical cell: [04]

1. $Al(s) | Al^{3+} || Zn^{2+} | Zn(s)$ 1. $Ca(s) | Ca^{2+} || Zn^{2+} | Zn(s)$

Table 4 (b): Standard Reduction Potential Series

Half-Reaction	E° (V) vs SHE	
$Ca^{2+} + 2e^{-} \rightarrow Ca$	-2.87	
$Al^{3+} + 3e^{-} \rightarrow Al$	-1.66	
$Zn^{2+} + 2e \rightarrow Zn$	-0.76	

- 5.(a) Figure 5(a) represents a chemical reaction taking place in a sealed container. [06]
 - i. State and explain Le Chatelier's Principle.
 - Predict the effect of decreasing temperature and increasing pressure on the concentration of NH₃.

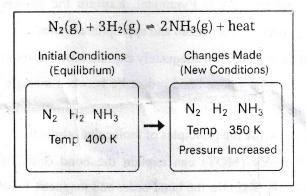


Figure 5(a)

(b) Figure 5(b) represents typical chemical reactions in equilibrium condition.

d Di

- i. **Identify** which curve (A or B) represents the reactant and product in both Plots.
- ii. Compare the concentration of reactants and products at equilibrium in the Plot 1 vs. Plot 2.

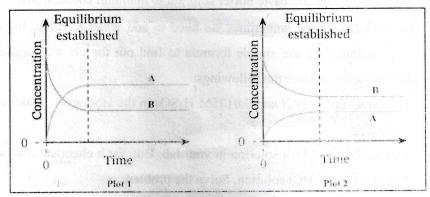


Figure 5(h)