University of Information Technology & Sciences (UITS)

Faculty of Science and Engineering

Department of Computer Science and Engineering

Program of P.Sc. in CSE

Mid Term Examination, Autumn- 2023

Course Title: Differential and Integral Calculus

Course Code: MAT 163

Marks: 20

Time: 1(one) hour

(Answer all muestions)

Find domain and range of the following functions and also sketch the graph [03] of the following functions:

(i) $f(x) = \sqrt{(-x-2)} - 4$ (ii) $f(x) = \frac{x}{x+3}$

- Define even function and odd function. Test whether the following [04] functions are even or odd.
 - (i) $f(x) = (x + \sqrt{1 + x^2})$
 - (ii) $f(x) = \frac{tanx}{x + sinx}$
- [03] If $f(x) = \sqrt{x^3 + 2\sqrt{x}}$, $g(x) = (1+x)^{-1}$ and $h(x) = x^{3/2}$. find $(f \circ g \circ h)(x)$.
- A function f(x) is defined as follows. 2. (a)

1021

$$f(x) = \begin{cases} 2x + 3, & x \le 4 \\ 7 + \frac{16}{x} & x > 4 \end{cases}$$

Discuss the continuity of f(x) at x = 4.

(b) Find $\frac{dy}{dx}$.

1081

- (i) $x^3y + 4xy^2 = 3xy$ (ii) $\sin(x^2y^2) = x$ (iii) $y = \frac{\sin x}{1 + \cos x}$ (iv) $y = [1 + \cos^3(\sin 2x)]^{-3}$

University of Information Technology and Sciences Faculty of Science and Engineering Department of CSE

Term Final Examination, Autumn- 2023 Course Title: Differential and Integral Calculus Course Code: MAT 163

Marks: 50 Time: 3 hours

(Answer all the questions)

(i)
$$\lim_{y\to\infty} (\sqrt{y^6 + 5y^3} - y^3)$$
 (ii) $\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$ (iii) $\lim_{n\to 0} (1+x)^{1/x}$

(i) Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ if $z = x^4 \sin(xy^3)$. [4]

(ii) Find the second order partial derivatives of $z = x^2y^3 + x^4y$.

$$f(x) = x^3 + x - 4; [-1, 2].$$

State Extreme-Value theorem. Find the absolute maximum and minimum values of the function
$$f(x) = 2x^3 + 3x^2 - 12x$$
 on the interval [-3, 2], and determine where these values occur.

(i)
$$\int (x^{-3} - 3x^{1/4} + 8x^2) dx$$
 (ii) $\int x^2 \sqrt{x - 1} dx$ (iii) $\int x^2 e^{-2x} dx$ (iv) $\int \frac{\sqrt{x^2 - 9}}{x} dx$; assuming that $x \ge 3$.

(i)
$$\int_{1}^{\sqrt{2}} \frac{dx}{x^2 \sqrt{4-x^2}}$$
 (ii) $\int_{0}^{1} \tan^{-1} x \ dx$ (iii) $\int_{0}^{\sqrt{\pi}/2} 5x \cos(x^2) \ dx$

(i)
$$\int_0^{\pi/2} \sin^5\theta \cos^6\theta \ d\theta$$
 (ii) $\int_0^1 y^{3/2} (1-y)^{5/2} \ dy$

5. a) Evaluate: (i) ∫₀¹ ∫₋₃² y²x dy dx (ii) ∫₀^{π/3} ∫₀^{cosy} xsiny dxdy
b) Evaluate the triple integral ∫∫∫_G 12xy²z³dV over the rectangular box G defined by the inequalities −1 ≤ x ≤ 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 2.
c) Find the area of the region that is enclosed between the curves y = x² and y = x + 6.

2.0