University of Information Technology & Sciences (UITS)

Faculty of Science & Engineering

Department of CSE

Term Final Examination, Autumn - 2023

Course Title: Engineering Physics
Course Code: PHY -175

Marks: 50

Time: 3 Hours

(Answer any five out of Six questions)

(a) Write down the fundamental postulates of kinetic theory of gases.	[3]
(b) Obtain an expression for pressure exerted by the gas molecule in a vessel and hence show	[5]
that kinetic energy per unit volume of the gas is $\frac{1}{2} \rho c^2$	7
(c) Calculate the mean free path of a gas molecule, given that the molecular radius is	[2]
2.0×10^{-10} m and the number of molecule per cc is 3.0×10^{19} .	0
2/ (a) State and explain first law of Thermodynamics.	[2]
(b) Prove that PVr = constant. (Symbols have their usual meaning).	[5]
Show that the slope of an adiabatic curve is y times that of the isothermal.	[3]
3 (a) Explain Maxwell's law of equipartition of energy.	[2]
Derive an expression for work done by a working substance in a complete Carnot's cycle.	[6]
(c) A Carnot's engine whose low temperature reservoir is at 7 °C has an efficiency of 50%. It	[2]
is desired to increase the efficiency to 70%. By how many degrees should the temperature	
of the high temperature reservoir be increased?	
4. (a) What are coherent sources? Explain the importance of such sources in interference phenomenon.	[3]
(b) Show that the intensity distribution due to interference of plane monochromatic light	[7]
waves coming from two sources of equal intensity is given by $I = 4a^2 \text{Cos}^2 \frac{\delta}{2}$ and hence	
explain energy distribution diagram for maximum and minimum intensities.	
5. (a) What is meant by diffraction of light?	[3]
(b) Explain how Fraunhofer diffraction patterns are obtained with the help of a single slit?	[7]
(a) What do you mean by angle of polarization?	[2]
(b) State and explain Brewster's law. Prove that the reflected and refracted rays are	[5]
perpendicular to each other when light is reflected at the polarizing angle.	
The refractive index of plastic is 1.25. Calculate the angle of refraction for a ray of light	[3]
incident at the polarizing angle.	